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1. Introduction

The two-dimensional sigma-model is a theory of maps from a two-dimensional space W to

a manifold M with a metric g and closed 3-form H. Remarkably, in certain circumstances

the two-dimensional quantum theory defined on (M,g,H) can be the same as that defined

by a sigma-model defined on a different manifold with different geometry and topology

(M̃ , g̃, H̃). Of particular interest here is T-duality, where (M,g,H) and the dual geometry
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(M̃ , g̃, H̃) both have d commuting Killing vectors with compact orbits [1-19]. The T-duality

transformation from M to M̃ can change the topology as well as the geometry [5 – 7, 11, 12].

If the target space of a sigma model has isometries, the field theory has corresponding

global symmetries. These can be promoted to local symmetries of the field theory by

coupling to gauge fields on W , and such a gauged sigma model is the starting point for

a proof of the equivalence of the dual sigma models. In [2 – 4], a gauged sigma model on

a larger space is constructed with the extra coordinates appearing as lagrange multipliers

imposing the condition that the gauge fields are pure gauge. Then two different gauge

choices give rise to two sigma-models with different target spaces, but as they arise from

two different ways of performing the same path integral, they give the same quantum

theory.

However, it is not always possible to gauge such an isometry symmetry: the potential

obstructions to gauging a sigma-model with non-trivial H were found in [20 – 22] and their

topological interpretation explored in [21, 23 – 26]. It is also not always possible to T-dualise

a sigma model with isometries, but the obstructions are weaker than those for gauging and

there are ungaugable sigma-models that nonetheless can be T-dualised. Many special cases

have been discussed in the literature e.g. [4, 7, 13, 14], but there does not seem to have

been a general analysis. The purpose here is to find the conditions necessary and sufficient

conditions for a geometry (M,g,H) to have a geometric T-dual (M̃, g̃, H̃), and also the

conditions for there to be a T-dual with a ‘non-geometric’ target space [19]. The conditons

found allow a geometric T-dual to be found for a more general class of geometries than

those discussed in [4, 7, 13, 14]. The local form of the transformations of course agree with

those of [2 – 4], and the novelty is in the understanding of global considerations.

An important example is that of a torus bundle in which there are local solutions

to Killing’s equations that generate the torus fibres, but which do not extend to globally

defined vector fields. In this case, there are no isometries, and so the analysis of [2 – 4]

does not apply. Nevertheless, it is expected that one can apply duality fibrewise in such

circumstances [27]. It will be shown here that there are potential obstructions to this, and

when these are absent a gauged sigma-model derivation of the fibrewise T-duality will be

given. The discussion involves addressing the question of whether one can generalise the

gauged sigma-model to the case of such torus bundles.

The action of the T-duality group O(d, d;Z) is usually presented in terms of fractional

linear transformations of gij + bij, but there are problems with this if b is only locally

defined and is not a tensor field. One of the aims here will be to give a careful global

characterisation of T-duality in terms of well-defined objects. This is an important pre-

requisite to reformulating the results in terms of generalised geometry, as will be discussed

elsewhere.

Suppose that (M,g,H) has d (globally defined) commuting Killing vectors km, m =

1, . . . , d, so that Lmg = 0 where Lm denotes the Lie derivative with respect to km, and

that H is invariant

LmH = 0 (1.1)
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The Lie derivative of a form is given by

Lm = ιmd + dιm (1.2)

where ιm is the interior product with km (using the conventions of [21]) so that (1.1) implies

dιmH = 0 (1.3)

and ιmH, ιmιnH, ιmιnιpH are closed forms on H. The sigma-model action is invariant

under corresponding rigid symmetries provided ιmH is exact, so that

ιmH = dvm (1.4)

for some globally-defined 1-forms vm [20].

Given a suitable good open cover {Uα} of the manifold M (in which each {Uα} has

trivial cohomology), in each patch Uα a two-form bα can be found such that

H = dbα (1.5)

In the overlap Uα ∩Uβ, the difference between the b’s must be closed and so exact, so that

bα − bβ = dΛαβ (1.6)

for some one-form Λαβ in Uα ∩ Uβ (satisfying the usual consistency condition in triple

overlaps). Then bα is a local potential for the field strength H, and is determined by H up

to local gauge transformations

δbα = dλα (1.7)

where λα is a one-form on Uα. The potential b need only be invariant up to a gauge

transformation, so that

Lmbα = dwα
m (1.8)

for a 1-form wα
m in Uα given by

wα
m = vm + ιmbα (1.9)

To be able to T-dualise using the d Killing vectors requires that the orbits be compact,

so that M has a torus fibration with fibres T d. In [4], T-duality was analysed for the case

in which a gauge can be chosen in which Lmbα = 0. However, such a gauge is not possible

for all patches in general. For example, such a gauge choice cannot be possible if there is

non-trivial H-flux on the fibres (i.e. if
∫

H is non-zero over a cycle of the T d fibres). In [7], a

global derivation of T-duality was given for one Killing vector (d = 1) for the case in which

ιmH is exact. It was then argued that this condition can be relaxed by choosing coordinate

patches on M in which ιmH is exact in each patch, and then patching together the gaugings

from the different patches. This was shown to work in some interesting examples, but the

questions as to whether such a patching is always possible and whether this extends to

more than one Killing vector were not addressed.

In [13, 14] the case of principle torus bundles was discussed. Dimensional reduction

of H on the T d fibres gives forms H3,H2,H1,H0 where Hp is a p-form on the base. It
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was claimed that T-duality was possible if H1 = 0,H0 = 0 and that otherwise there is an

obstruction. There is also a 2-form F2 on the base which is the curvature of the connection

on the bundle, and both H2 and F2 take values in the Lie algebra of U(1)d. The topology is

characterised by two integral cohomology classes on the base, the first Chern class [F2] and

the ‘H-class’ [H2], and T-duality interchanges the two, so that [F̃2] = [H2] and [H̃2] = [F2].

Here the general case of simultaneous T-duality in d directions will be analysed, for

general T d fibrations (i.e. M need not be a principle torus bundle). In this article, only

the case in which the local U(1)d acts without fixed points will be discussed. First, in

the case of d globally-defined nowhere-vanishing Killing vector fields, the result is that the

condition for a geometric T-duality to be possible, i.e. one in which the dual is again a

manifold M̃ with tensor fields g̃, H̃, are that the closed 2-form ιmH is the curvature for

some line bundle, that ιmιnH is exact and that ιmιnιpH = 0. This includes cases in which

ιmH is not exact, so that the original sigma-model is not invariant under the action of

U(1)d, and in which H1 is non-zero. This is then generalised to the case of torus bundles,

where a modification of the constraint on ιmιnH is found, while ιmιnιpH = 0 is still needed.

The general form of the T-duality transformations are given in terms of globally-defined

geometric structures — of course, they agree with those given in [2, 4] locally.

An important question is whether T-duality is possible under more general circum-

stances. In [19] it was argued that in certain cases the T-dual is a T-fold — a space which

looks locally like a manifold with g,H but where the transition functions between patches

involve T-duality transformations. Examples of such non-geometric string backgrounds

have been explored in [19],[27–34]. It will be shown here that the only condition for a

T-duality to a T-fold to be possible is that the constants ιmιnιpH vanish, and no condi-

tion on ιmιnH is needed. In [28], it was argued that T-duality of more general cases with

ιmιnιpH 6= 0 is in fact possible, with a result that is a stringy geometry that does not look

like a conventional manifold even locally. (An alternative viewpoint was taken in [16 – 18].

It was argued that if H1 6= 0 and H0 = 0 the dual is a non-commutative geometry in [16, 17]

and that if H0 6= 0 then it is a non-associative geometry in [18].)

The plan of the paper is as follows. In section 2, a review is given of the gauging of

sigma-models with Wess-Zumino term and in particular of the obstructions to gauging.

Section 3 further examines the geometry of manifolds M that are torus bundles, with

a metric g and closed 3-form H that are invariant under a U(1)d group action, and in

particular investigates the quotient geometry arising from the integrating out the gauge

fields in the corresponding gauged sigma-model with WZ term. There are problems with

the usual formulation of the T-duality transformations; for example, they involve non-

linear transformations of the 2-form gauge field which appear inconsistent with the 2-form

gauge symmetry. Geometric quantities are introduced in terms of which T-duality can be

expressed covariantly.

Section 4 shows that almost all of the obstructions to gauging a U(1)d group action

can be overcome by introducing a further d scalar fields. Geometrically, these extra scalars

correspond to the fibre coordinates of a d-torus bundle M̂ over M , which is the doubled

torus of [19]. These extra scalars can also be thought of as the extra lagrange multiplier

fields introduced in the sigma-model derivation of T-duality [2 – 4]. In section 5, the global

– 4 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
7

structure of M̂ is analysed, and in particular the periodicities of the extra coordinates shown

to be inversely related to the periodicites of the fibre coordinates of M . It is seen that there

are some subtleties in identifying precisely which are the correct periodic coordinates.

Section 6 uses the results from the previous sections to re-examine the sigma-model

derivation of T-duality. The standard derivation gauges an abelian isometry and adds

lagrange multiplier fields constraining the gauge fields to be trivial. Then integrating out

the lagrange multipliers and gauge-fixing recovers the original geometry while integrating

out the gauge fields gives the T-dual geometry. Section 6 generalises this to a wide class of

geometries where the first step of gauging the sigma-model is not possible, and in this way

it is seen that the obstructions to T-duality are considerably weaker than the obstructions

to gauging a sigma-model. Nevertheless, there are some obstructions to T-duality and

these are carefully discussed. The T-duality transformations are expressed covariantly in

terms of geometric variables.

Section 7 examines more general torus bundles in which there is no action of U(1)d,

These are not principle bundles, and although Killing vectors exist locally, they do not

extend to global vector fields. The adiabatic argument suggests that T-duality can be

applied fibrewise in such situations, even though the general T-duality derivation of section

6 fails in this case. A more general construction is proposed that formally establishes

fibrewise T-duality in this case. Section 8 looks at a more general set-up in which the

transition functions involve B-shifts. Local application of the T-duality rules lead to a set

of patches of dual geometry that cannot fit together into a geometric background but which

do fit together to form a non-geometric background, a T-fold. However, a derivation of this

result using gauged sigma-models is not possible. In section 9, the discussion of T-duality

is extended to T-folds.

2. Gauged sigma models

The sigma model with target space M is a theory of maps φ : W → M . If Xi are

coordinates on M and σa are coordinates on W , the map is given locally by functions

Xi(σ). The action is the sum of a kinetic term Sg and a Wess-Zumino term SWZ

S0 = Sg + SWZ (2.1)

Given a metric g on M , the kinetic term is

Sg =
1

2

∫

W

gij dXi ∧ ∗dXj (2.2)

Here and in what follows, the pull-back φ∗(dXi) = ∂aX
idσa will be written dXi, and it

should be clear from the context whether a form on M or its pull-back is intended. The

Hodge dual on W constructed using a metric hab is denoted ∗.

The Wess-Zumino term is constructed using a closed 3-form H on M . If H is exact,

then there is a globally defined 2-form b on M with

H = db (2.3)
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and the Wess-Zumino term is

SWZ =

∫

W

φ∗b =
1

2

∫

W

bij dXi ∧ dXj (2.4)

This can be rewritten as

SWZ =

∫

V

φ∗H =
1

3

∫

V

Hijk dXi ∧ dXj ∧ dXk (2.5)

where V is any 3-manifold with boundary W .

This form of the action can also be used in the case in which H is not exact. Then the

action depends on the choice of V , but the difference between the actions for two choices

V, V ′ with the same boundary W is

SWZ(V ) − SWZ(V ′) =

∫

V −V ′

φ∗H =

∫

φ(V −V ′)
H (2.6)

where V −V ′ is the compact 3-manifold obtained from glueing V to V ′ along their common

boundary with opposite orientations, and φ(V − V ′) is the corresponding closed 3-manifold

in M . The result is a topological number depending only on the cohomology class of H

and the homology class of φ(V − V ′), so that the choice of V does not affect the classical

field equations. The ambiguity in the choice of V leads to an ambiguity in the Euclidean

functional integral
∫

[dX] exp (−kS) by a phase

exp ik

∫

φ(V −V ′)
H (2.7)

where k is a coupling constant. The functional integral is then well-defined provided k
2π

[H]

is an integral cohomology class (where [H] is the de Rham cohomology class represented

by H).

Suppose there are d commuting Killing vectors km with LmH = 0. Then under the

transformation

δXi = αmki
m(X) (2.8)

with constant parameter αm the action changes by

δS =

∫

W

φ∗(αmιmH) (2.9)

and this will be a surface term if ιmH is exact, so that

ιmH = dvm (2.10)

for some (globally defined) one-forms vm, which are defined by (2.10) up to the addition

of exact forms [20]. This is then a global symmetry if ιmH is exact.

Gauging of the sigma-model [20, 22] consists of promoting the symmetry (2.8) to a local

one with parameters that are functions αm(σ) by seeking a suitable coupling to connection

one-forms Cm on W transforming as

δCm = dαm (2.11)
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It was shown in [20, 22] that gauging is possible if ιmH is exact, and a one-form vm =

vmidXi can be chosen with ιmH = dvm that satisfies

Lmvn = 0 (2.12)

(so that ιmH represents a trivial equivariant cohomology class) and

ιmvn = −ιnvm (2.13)

This defines globally-defined functions

Bmn = ιmvn (2.14)

satisfying Bmn = −Bnm and LpBmn = 0. The identity

ιmιnH = Lmvn − dιmvn (2.15)

together with Lmvn = 0 implies ιmιnH is exact with

ιmιnH = −dBmn (2.16)

Finally

ιmιnιpH = 0 (2.17)

as LpBmn = 0.

The covariant derivative of Xi is

DaX
i = ∂aX

i − Cm
a ki

m (2.18)

with field strength

Gm = dCm (2.19)

The gauged action is [20]

S =
1

2

∫

W

gijDXi ∧ ∗DXj +

∫

V

(
1

3
HijkDXi ∧ DXj ∧ DXk + Gm ∧ vmiDXi

)
(2.20)

which can be rewritten as (choosing a flat metric hab = ηab) [20, 22]

S0 +

∫

W

(
−Cm

a Ja
m +

1

2
Cm

a Cn
b

[
Gmnηab + Bmnǫab

])
(2.21)

where S0 is the ungauged action,

Gmn = gijk
i
mkj

n (2.22)

and

Ja
m = (kmiη

ab − vmiǫ
ab)∂bX

i (2.23)

Introducing light-cone world-sheet coordinates σa = (σ+, σ−) with η+− = ǫ+− = 1, this

can be rewritten as

S0 +

∫

W

(
−Cm

+ J+
m − Cm

− J−
m + Cm

+ EmnCn
−

)
(2.24)
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where

Emn = Gmn + Bmn (2.25)

and

Jm± = (kmi ± vmi)∂±Xi (2.26)

The ungauged action can be written as

∫

W

d2σ Eij∂+Xi∂−Xj (2.27)

where

Eij = gij + bij (2.28)

If Emn(X) is invertible for all X, then writing the gauge fields C = C̃ + Φ where

C̃+ = (Et)−1J+, C̃− = E−1J− (2.29)

gives

S′ = S0 −

∫

W

d2σ J−
m(E−1)mnJ+

n (2.30)

plus

SΦ =

∫

W

d2σ Φm
+EmnΦn

− (2.31)

Note that C̃ transforms as a gauge field under the local transformations (2.8) δC̃ = dα [20],

so that Φm
a are globally-defined world-sheet vectors. The action SΦ involves no derivatives

so that the Φ are auxiliary fields with no dynamics. The action (2.30) can be written as

∫

W

d2σ E ′
ij∂+Xi∂−Xj (2.32)

where Eij has been transformed to

E ′
ij = Eij − (kmi + vmi)(E

−1)mn(kmj − vmj) (2.33)

This amounts to gauging using the connection C̃, and so is automatically invariant under

the local transformations (2.8).

If the isometry acts without fixed points and if gij induces a positive-definite metric

on the fibres, then Gmn is invertible. The matrix E is degenerate at points X0 at which

there is a vector U such that E(X0)U = 0, so that GmnUn = −BmnUn. This implies that

GmnUmUn = 0 so that at X0 there is a Killing vector K (some linear combination of the

km) that becomes null. For positive definite Gmn, this implies K(X0) = 0 so that X0 is a

fixed point for K. Then E is invertible if and only if the isometry group acts without fixed

points.

– 8 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
7

3. The geometry of gauged sigma models

Suppose the abelian isometry group G generated by the Killing vectors acts without fixed

points. Then the quotient M/G defines the space of orbits N , and is a manifold. As

a result, M is a bundle over N with fibres G, with projection π : M → N . A form ω

satisfying ιmω = 0 will be said to be horizontal, one satisfying Lmω = 0 will be said to be

invariant and one that is both horizontal and invariant is basic. Equivariant cohomology

is the cohomology of basic forms, and the obstructions to gauging can be characterised in

terms of this cohomology [23 – 25]. A metric g on M will be said to be horizontal if the

Killing vectors km are null and satisfy g(km, V ) = 0 for all V , and a horizontal metric

which is invariant (Lg = 0) will be said to be basic. Basic metrics and forms on M can be

thought of as metrics and forms on N , as they are the images under the pull-back π∗ of

metrics and forms on N .

3.1 A single Killing vector

Before proceeding to the general case, it will be useful to discuss the case d = 1 with one

Killing vector k. Let G = gijk
ikj , and it will be assumed that G is nowhere vanishing

(so that there are no fixed points). Then M is a line or circle bundle over some manifold

N , with fibres given by the orbits of k. It is useful to define the dual one-form ξ with

components ξi = G−1gijk
j , so that ιξ = 1 where ι is the interior product with k. The

2-form

F = dξ (3.1)

is horizontal

ιF = 0 (3.2)

The metric takes the form

g = ḡ + Gξ ⊗ ξ (3.3)

where ḡ(k, ·) = 0 so that ḡ is basic and can be thought of as a metric on the quotient space

N . In adapted local coordinates Xi = (X,Y µ) in which

ki ∂

∂Xi
=

∂

∂X
(3.4)

and Y µ are coordinates on N , the Lie derivative is the partial derivative with respect to

X, so that gij ,Hijk are independent of X. Then

ξ = dX + A (3.5)

where A = Aµ(Y )dY µ satisfies ιA = 0 and

dA = F (3.6)

Then A is a connection 1-form for M viewed as a bundle over N .

If the symmetry is gaugable, there is a globally defined v with ιH = dv and

ιv = 0, Lkv = 0 (3.7)
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Then

F̃ = dv (3.8)

is also horizontal, ιF̃ = 0. In the adapted coordinates, v = vµdY µ.

The 3-form H can be decomposed as

H = h + (ιH) ∧ dX = h + (dv) ∧ dX (3.9)

where h is a horizontal closed 3-form, ιh = 0 and dh = 0. As a result H = db where

b = b̄ + v ∧ dX (3.10)

and h = db̄. There are similar expressions using ξ instead of dX

H = H̄ + dv ∧ ξ = H̄ + F̃ ∧ ξ (3.11)

where

H̄ = db̄ − F̃ ∧ A (3.12)

satisfies

dH̄ = −F ∧ F̃ (3.13)

and is horizontal, ιH̄ = 0, and so basic. Here H̄ is a globally defined 3-form.

If the orbit of M is a circle so that M is a circle bundle, the topology is characterised by

the first Chern class, [F ] ∈ H2(N). The topology associated with the b-field is characterised

by the cohomology class [F̃ ] ∈ H2(N), and this will be referred to as the H-class. It will

be seen in section 5 that, when appropriately normalised, both correspond to integral

cohomology classes.

Next, consider the geometry (M,g′,H ′) obtained by gauging k and eliminating the

gauge field. It is given by (2.33), which implies

E ′
ij = Eij − (Gξi + ξ̄j)G

−1(Gξj − ξ̄j) (3.14)

and the notation ξ̄i ≡ vi has been introduced for comparison with later formulae. The

symmetric and anti-symmetric parts give

g′ij = gij − Gξiξj + G−1ξ̄iξ̄j, b′ij = bij − ξ̄iξj + ξiξ̄j (3.15)

Then

g′ = g − Gξ ⊗ ξ + G−1 ξ̄ ⊗ ξ̄ = ḡ + G−1 ξ̄ ⊗ ξ̄ (3.16)

and

H ′ = H − F̃ ∧ ξ + ξ̄ ∧ F = H̄ + ξ̄ ∧ F (3.17)

are both horizontal, using ιξ̄ = 0,

ιH ′ = 0, g′(k, ·) = 0 (3.18)

as well as invariant. This is sufficient to ensure that δXi = αki is a symmetry of the sigma

model on (M,g′,H ′). The Killing direction is null for the metric g′. One can then take the

– 10 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
7

quotient with respect to the isometry to obtain a sigma model on the quotient space N ,

with geometry (N, g′,H ′). More physically, the local symmetry can be fixed by choosing

X(σ) = X0 for some point on the orbit and the sigma model reduces to one on N with

coordinates Y µ. This amounts to choosing a section of the bundle, and in general there

will not be a global section, so that one may need to choose different gauge choices X0 over

each patch in N .

3.2 Several Killing vectors

Consider (M,g,H) with d commuting Killing vectors, and suppose that Gmn and Emn are

invertible everywhere. It is useful to define the one-forms ξm with components

ξm
i = Gmngijk

j
n (3.19)

so that they are dual to the Killing vectors

ξm(kn) = δm
n (3.20)

and satisfy

ιmFn = 0 (3.21)

where

Fm = dξm (3.22)

The metric can be written as

g = ḡ + Gmn ξm ⊗ ξn (3.23)

where ḡ is a basic metric with ḡ(km, ·) = 0 so that it can be viewed as a metric on N .

In adapted local coordinates Xi = (Xm, Y µ) in which

ki
m

∂

∂Xi
=

∂

∂Xm
(3.24)

the Lie derivative is the partial derivative with respect to Xm, so that gij ,Hijk are inde-

pendent of Xm. Then

ξm = dXm + Am (3.25)

where Am = Am
µ (Y )dY µ satisfies ιmAn = 0 and

dAm = Fm (3.26)

satisfies ιmFn = 0. The Am are connection 1-forms for M viewed as a bundle over N .

Any form on M can be expanded using either the forms dXm defined in a local coor-

dinate patch, or using the globally-defined one-forms ξm. From (2.14),

vm = −Bmnξn + ξ̄m (3.27)

for some globally-defined basic one-form ξ̄m. Defining the basic 2-form

F̃m = dξ̄m (3.28)
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one has

dvm = F̃m − BmnFn − dBmn ∧ ξn (3.29)

Note that dBmn is basic. The 1-forms ξ̄ are given in terms of v by

ξ̄m = [vm − (ιnvm)ξn] + (Bmn + ιnvm)An (3.30)

The 3-form H can be written as

H = H̄ + (ιmH) ∧ ξm +
1

2
(ιmιnH) ∧ ξm ∧ ξn −

1

6
(ιmιnιpH) ∧ ξm ∧ ξn ∧ ξp (3.31)

where ιmH̄ = 0. Using (2.10), (2.16), (2.17) this becomes

H = H̄ + (dvm) ∧ ξm −
1

2
(dBmn) ∧ ξm ∧ ξn (3.32)

giving

H = H̄ + (F̃m − BmnFn) ∧ ξm +
1

2
(dBmn) ∧ ξm ∧ ξn (3.33)

or equivalently

H = H̄ + F̃m ∧ ξm + dB (3.34)

where

B =
1

2
Bmnξm ∧ ξn (3.35)

is a globally-defined 2-form. Closure of H requires that H̄ satisfy

dH̄ = −F̃m ∧ Fm (3.36)

As H̄ is basic and H̄ + F̃m ∧ ξm is closed,

H̄ + Fm ∧ ξ̄m = H̄ + F̃m ∧ ξm + d(ξm ∧ ξ̄m) (3.37)

is closed and basic, and so locally this is db̄ where b̄ is a basic 2-form. Then locally H = db

where

b = b̄ + ξm ∧ ξ̄m + B (3.38)

and

H̄ = db̄ − Fm ∧ ξ̄m (3.39)

There are now d 1st Chern classes [Fm] ∈ H2(N) and d H-classes [F̃m] ∈ H2(N).

Consider now the geometry (M,g′,H ′) arising from eliminating C, given by (2.33).

Rewriting in terms of ξ, ξ̄, a remarkable simplification occurs. The equations (3.19), (3.27)

imply

kmi − vmi = Emnξn − ξ̄m, kmi + vmi = Enmξn + ξ̄m (3.40)

so that

J− = (Emnξn
i − ξ̄mi)∂−Xi, J+ = (Enmξn

i + ξ̄mi)∂+Xi (3.41)

and the induced connections C̃ are

C̃m
− = (ξm

i − (E−1)mnξ̄ni)∂−Xi, C̃m
+ = (ξm

i + (E−1)nmξ̄ni)∂+Xi (3.42)
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Using (3.25), this can be rewritten as

C̃m
a = Am

i ∂aX
i + Φm

a (3.43)

where Φm
a is a globally-defined one form on W constructed using ξ̄, plus a pure gauge term

∂aX
m. Thus the connections C and C̃ on W are given by the pull-back of the connection A

on the bundle M → N , plus global one-forms, so that the U(1)d bundle over the world-sheet

is the pull-back of the torus bundle over N .

The new geometry obtained by integrating out the gauge fields is given by

E ′
ij = Eij − (Epmξp

i + ξ̄mi)(E
−1)mn(Enqξ

q
j − ξ̄nj)

= Eij − ξm
i Emnξn

j + ξ̄mi(E
−1)mnξ̄nj − ξ̄miξ

m
j + ξm

i ξ̄mj (3.44)

Defining the symmetric and anti-symmetric parts

G̃mn = (E−1)(mn), B̃mn = (E−1)[mn] (3.45)

the geometry is given by

g′ = g − Gmnξm ⊗ ξn + G̃mnξ̄m ⊗ ξ̄n (3.46)

b′ = b − ξ̄m ∧ ξm − ξm
i Bmnξn

j + ξ̄miB̃
mnξ̄nj (3.47)

Using (3.23),

g′ = ḡ + G̃mnξ̄m ⊗ ξ̄n (3.48)

while

H ′ = H − F̃m ∧ ξm + ξ̄m ∧ Fm (3.49)

so that from (3.34), (3.35)

H ′ = H̄ + ξ̄m ∧ Fm + dB̃ (3.50)

where

B̃ =
1

2
B̃mnξ̄m ∧ ξ̄n (3.51)

Thus the gauging together with elimination of gauge fields leads to the changes

g = ḡ + Gmnξm ⊗ ξn → g′ = ḡ + G̃mnξ̄m ⊗ ξ̄n (3.52)

H = H̄ + F̃m ∧ ξm + dB → H ′ = H̄ + ξ̄m ∧ Fm + dB̃ (3.53)

which then interchanges ξ with ξ̄ and takes E → E−1.

Note that g′,H ′ are invariant and horizontal with respect to all of the Killing vectors

ιmH ′ = 0, g′(km, ·) = 0 (3.54)

so that the sigma-model on (M,g′,H ′) is invariant under the local symmetries δXi = αmki
m.

This can be checked directly, or by noting that eliminating any one of the Cm gives a

geometry that is horizontal with respect to the corresponding Killing vector, and then

repeating the argument for each of the d gauge fields in turn. Again one can take the

quotient under the action of the isometry group to obtain a sigma model on (N, g′,H ′).

This can be thought of as fixing the symmetry by choosing local sections of the bundle,

fixing all of the coordinates Xm, so that the sigma model reduces to one on N with

coordinates Y µ.
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3.3 Global symmetries

Suppose the orbits of each of the km are periodic, so that M is a torus bundle over N .

The general Killing vector with periodic orbits is of the form
∑

m Nmkm where Nm are

integers. One can then change from the basis {km} to a new basis {k′
m} of Killing vectors

with periodic orbits

k′
m = Lm

nkn (3.55)

where Lm
n is any matrix in GL(d,Z). The components of Gmn, Bmn, ξm, vm in the new

basis are then

G′ = LGLt, B′ = LBLt, ξ′ = (Lt)−1ξ, v′ = Lv (3.56)

This gives a natural action of GL(d,Z) in which upper indices m transform in the vector

representation and lower indices transform in the co-vector representation. The periodic

coordinates Xm adapted to km and the coordinates X ′m adapted to k′
m with

km =
∂

∂Xm
, k′

m =
∂

∂X ′m
(3.57)

are related by

X ′m = (L−1)n
mXn (3.58)

which is a large diffeomorphism of the torus.

The metric and b-field are given in terms of Gmn, Bmn, ξm, vm. Then G′, B′, v′, ξ′

determine the same geometry as G,B, v, ξ if they are related by a GL(d,Z) transformation,

as one is transformed to the other by a change of basis. Then GL(d,Z) is a symmetry,

as target spaces related by the action of GL(d,Z) are equivalent and determine the same

physical models.

A shift

Bmn → Bmn + βmn (3.59)

where βmn are constants leaves H unchanged and so the classical physics is unaltered. The

action changes by

1

2

∫

W

βmndXm ∧ dXn =

∫

φ(W )
β (3.60)

which is the integral of the 2-form β over the embedding of the world-sheet in the target

space M . For compact world-sheets, this gives a contribution of exp ik
∫

β to the functional

integral and so this will be a symmetry provided k
2π

β represents an integral cohomology

class.

Then the theory is invariant under GL(d,Z) and integral shifts of B, in the sense that

acting with these gives a physically equivalent theory. For non-compact fibres, the situation

is similar but the symmetries become the continuous symmetries of GL(d,R) and arbitrary

constant shifts of B.
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4. Gauging the ungaugable

Consider now the general case in which (M,g,H) is invariant under the action of an

abelian isometry group with LmH = 0 but in which the conditions for the gauging of

the corresponding sigma-model are not necessarily satisfied, so that their consequences

discussed in the previous sections also do not apply. Then ιmH is closed but need not be

exact. Given a suitable good open cover {Uα} of M , in each patch Uα a one-form vα
m can

be found such that

ιmH = dvα
m (4.1)

In the overlap Uα ∩Uβ, the difference between the v’s must be closed and so exact, so that

vα
m − vβ

m = dλαβ
m (4.2)

for some λαβ . Then in triple overlaps, λαβ + λβγ + λγα = cαβγ for some constants cαβγ . If

these constant cocyles vanish in all triple overlaps, then each vm is the connection for some

line or circle bundle over M , and we now restrict ourselves to this case. This can be viewed

as a restriction on the group action on the B-field. There are then d such connections vm,

so that they combine to form the connection for some bundle M̂ over M with d-dimensional

fibres. In the next section, it will be seen that this should be taken to be a torus bundle,

with fibres U(1)d. Choosing fibre coordinates X̂α
m over each patch Uα, with transition

functions

X̂α
m − X̂β

m = −λαβ
m (4.3)

then

v̂m = dX̂α
m + vα

m (4.4)

are globally defined 1-forms on M̂ as v̂α
m = v̂β

m over Uα ∩ Uβ. In this section, it will be

shown that the sigma model on M can be lifted to a sigma-model on M̂ and that under

certain circumstances the isometries can be lifted to gaugable ones on M̂ , even if they were

ungaugable on M .

Then M̂ with coordinates X̂I = (Xi, X̂m) = (Yµ,Xm, X̂m) is a bundle over M with

projection π : M̂ → M with π : (Xi, X̂m) → (Xi). A metric ĝ and closed 3-form Ĥ can be

chosen on M̂ with no X̂m components, i.e.

ĝ = π∗g, Ĥ = π∗H (4.5)

where π∗ is the pull-back of the projection. The pull-back will often be omitted in what

follows, so that the above conditions will be abbreviated to ĝ = g, Ĥ = H. Then the

only non-vanishing components of ĝIJ are gij and ∂/∂X̂m is a null vector, while the only

non-vanishing components of ĤIJK are Hijk.

It will be convenient to lift the Killing vectors km on M to vectors k̂m on M̂ that act

on X̂m as well as Xi, so that

k̂m = km + Θmn
∂

∂X̂n

(4.6)
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for some Θmn. For k̂m to be vector fields on M̂ requires, using (4.3), that Θmn have

transition functions

Θα
mn − Θβ

mn = −ιmdλαβ
n (4.7)

As g,H are independent of X̂, the k̂m are Killing vectors on M̂ :

L̂mĝ = 0, L̂mĤ = 0 (4.8)

For any choice of Θmn, there is an action generated by the Killing vector fields k̂m on the

space (M̂, ĝ, Ĥ) and we now turn to the question of whether this satisfies the conditions

for gauging reviewed in section 2. If ι̂m denotes the interior product with k̂m, then

ι̂mv̂n = ιmvn + Θmn (4.9)

If Θmn is chosen to be

Θmn = Bmn − ιmvn (4.10)

for some antisymmetric Bmn = −Bnm, then

ι̂mv̂n + ι̂nv̂m = 0 (4.11)

Further, as dv = dv̂,

ι̂mĤ = dv̂m (4.12)

Next, the Lie derivative of v̂ with respect to k̂ is

L̂mv̂n = ι̂mι̂nĤ + dι̂mv̂n = ιmιnH + dBmn (4.13)

so that if

ιmιnH = −dBmn (4.14)

then

L̂mv̂n = 0 (4.15)

Then Θ has the transition functions (4.7) provided Bmn are globally defined functions on

M , Bα
mn = Bβ

mn, and this together with (4.14) implies that ιmιnH is exact.

Finally, consider the algebra for the isometries generated by the k̂m. The Lie bracket

is

[k̂m, k̂n] = 2L[mΘn]p
∂

∂X̂p

(4.16)

Using (4.14) and LmBnp = ιmdBnp since Bnp is a 0-form, one finds

LmBnp = −ιmιnιpH (4.17)

while (4.1) implies

2L[mιn]vp = −ιmιnιpH (4.18)

Then the Lie bracket is

[k̂m, k̂n] = −(ιmιnιpH)
∂

∂X̂p

(4.19)
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so that the algebra is abelian if

ιmιnιpH = 0 (4.20)

If this holds, then (4.17) implies that Bmn is constant along the orbits of k:

LmBnp = 0 (4.21)

Then Bnp are basic and can be regarded as functions on N .

There are a further d vector fields on M̂ defined by

k̃m =
∂

∂X̂m

(4.22)

and as g,H are independent of X̂m, these are Killing vectors preserving H. Then M̂ has 2d

commuting Killing vectors k̂m, k̃m. Assuming Gmn = ĝ(k̂m, k̂n) = g(km, kn) is invertible,

the one forms

ξ̂m ≡ GmnĝIJ k̂I
ndXJ = ξm (4.23)

are the same as ξm. The one-forms ξ̃m defined by

v̂m = ξ̃m − Bmnξn (4.24)

are horizontal with respect to k̂m.

It is useful to choose local coordinates (X̃m, X̃m, Ỹ µ) adapted to the 2d commuting

isometries, so that

k̂m =
∂

∂X̃m
, k̃m =

∂

∂X̃m

(4.25)

The required change of coordinates is

X̃m = Xm

Ỹ µ = Y µ

X̃m = X̂m + fm (4.26)

where fm(Xm, Y µ) satisfies
∂fm

∂Xn
= −Θnm (4.27)

so that

dX̃m = dX̂m − ΘnmdXn + fm,µdY µ (4.28)

The integrability condition ∂[pΘn]m = 0 for (4.27) is satisfied as a result of (4.20). Then

in the coordinate system (Xm, X̃m, Y µ) many of the results derived in section 3 can be

applied. In particular,

ξ̃m = dX̃m + Ãm (4.29)

where Ãm = ÃmµdY µ is a connection one-form that is horizontal with respect to k̂m, k̃m,

and

F̃m = dξ̃m = dÃm (4.30)
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is also horizontal.

Then the geometry (M̂ , ĝ, Ĥ) with doubled fibres can be constructed provided the

closed 2-form ιmH is the curvature for some line bundle. The sigma-model on (M̂, ĝ, Ĥ)

has an abelian isometry symmetry generated by the k̂m which can be gauged precisely

if the original geometry (M,g,H) has as an isometry generated by the km satisfying the

two conditions that (i) ιmιnH is exact, so that there are well-defined functions Bmn on

M satisfying (4.14), and (ii) ιmιnιpH = 0. These are considerably weaker than the con-

ditions needed for the isometry of (M,g,H) to be gaugable; here vα
m need not be globally

defined, and is not required to satisfy either Lmvn = 0 or ιmvn = −ιnvm. A more general

construction in which condition (i) is relaxed will be discussed in later sections.

The gauged action is now obtained by inserting the appropriate hatted objects in (2.20)

or (2.21). The action (2.20) becomes

Ŝ =
1

2

∫

W

gijDXi ∧ ∗DXj +

∫

V

(
1

3
HijkDXi ∧ DXj ∧ DXk + Gm ∧ v̂mIDX̂I

)
(4.31)

where

DaX̂
I = ∂aX̂

I − Cm
a k̂I

m (4.32)

so that

DaX̂m = ∂aX̂m + ΘmnCn
a (4.33)

The action can be rewritten as

Ŝ = S0 +

∫

W

(
−Cm

a Ĵa
m +

1

2
Cm

a Cn
b

[
Gmnηab + Bmnǫab

])
(4.34)

where

Ĵa
m = Ja

m − ǫab∂bX̂m (4.35)

(Note that ĝIJ k̂J
mdX̂I = gijk

i
mdXj , and ξ̂m = ξm is dual to k̂m.)

As before, shifting the gauge fields C gives the action (2.31) plus

S′ = S0 −

∫

W

d2σ Ĵ−
m(E−1)mnĴ+

n (4.36)

so that the original action

S0 =

∫

W

d2σ ÊIJ∂+X̂I∂−X̂J =

∫

W

d2σ Eij∂+Xi∂−Xj (4.37)

is changed by replacing ÊIJ with

Ê ′
IJ = ÊIJ − (k̂mI + v̂mI)(E

−1)mn(k̂mJ − v̂mJ) (4.38)

which can be rewritten as

E ′
IJ = EIJ − (Epmξp

I + ξ̃mI)(E
−1)mn(Enqξ

q
J − ξ̃nJ) (4.39)

with symmetric and anti-symmetric parts

g′ = g − Gmnξm ⊗ ξn + G̃mnξ̃m ⊗ ξ̃n (4.40)

b′ = b − ξ̃m ∧ ξm −
1

2
Bmnξm ∧ ξn +

1

2
B̃mnξ̃m ∧ ξ̃n (4.41)
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5. Global structure and large gauge transformations

In the last section, it was seen that adding extra coordinates X̂ enables one to overcome

obstructions to gauge a wide class of sigma-models. This involved replacing v with v̂ =

dX̂ + v and the gauged action Ŝ (4.34) differs from (2.21) by an extra term proportional

to v̂ − v, ∫

W

Cm ∧ dX̂m (5.1)

Suppose that the orbits of the km are compact, so that Xm are periodic coordinates on

a torus. Then the question arises as to whether the new coordinates are also periodic.

In [7], it was argued that the invariance of the extra term in (5.1) under large gauge

transformations requires that X̂ be periodic, However, the situation is complicated due

to the fact that X̂ is not invariant under the transformations generated by k̂, and the

action S0 in (2.21) may not be invariant under large gauge transformations in general. In

this section, it will be shown that X̃m are periodic coordinates for a torus dual to the

Xm torus. Note that from (4.26), periodicity conditions for X̃ are not consistent with

periodicity conditions for X̂ unless the components of Θmn are rational numbers, and as

Θmn varies continuously over N this will not be the case in general. WIth the coordinates

X̃ periodically identified, the orbits of the k̃m are periodic and the space M̂ is a torus

bundle over N with fibre T 2d.

5.1 Simplified form of gauged sigma-models

Consider the gauged sigma-model on (M,g,H) discussed in sections 2,3. As

H = H̄ + F̃m ∧ ξm + dB (5.2)

where

B =
1

2
Bmnξm ∧ ξn (5.3)

is a globally-defined 2-form, the pull-back φ∗B defines a WZ-term
∫
W

φ∗B which can be

gauged by minimal coupling. The gauged action is then the sum of the minimal coupling

term

Smin =
1

2

∫

W

gijDXi ∧ ∗DXj + Bmnξm
i ξn

j DXi ∧ DXj (5.4)

and a non-minimal term

Snon−min =

∫

V

(
1

3
(H − dB)ijkDXi ∧ DXj ∧ DXk + Gm ∧ ξ̄miDXi

)
(5.5)

which can be rewritten locally as

Snon−min =

∫

W

(b − B) + Cm ∧ ξ̄m =

∫

W

d2σ ǫab

(
1

2
(b − B)ij∂aX

i∂bX
j + Cm

a ξ̄mi∂bX
i

)

(5.6)

where ξ̄ is defined by (3.27)
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For the sigma-model on (M̂ , g,H) with the action of k̂ gauged, similar formulae apply

with

Snon−min =

∫

V

(
1

3
(H − dB)ijkDXi ∧ DXj ∧ DXk + Gm ∧ ξ̃miDXi

)
(5.7)

The corresponding two-dimensional action is

Snon−min =

∫

W

(b − B) + Cm ∧ ξ̃m (5.8)

5.2 Large gauge transformations and global structure

A homology basis of one-cycles on M̂ (γn, γ̃n, γA) can be chosen so that γm is the one-cycle

generated by km, γ̃m is the one-cycle generated by k̃m, and γA are one-cycles on N . Then

the periods are ∮

γn

ξm = 2πRmδm
n,

∮

eγn

ξ̃m = 2πR̃mδm
n (5.9)

for some Rm, R̃m, and in the adapted coordinates this determines the periodicities

Xm ∼ Xm + 2πRm, X̃m ∼ X̃m + 2πR̃m (5.10)

From the form of the minimal couplings, for any 1-cycle g on W , the Wilson line
∮
g
C

transforms under a large gauge transformation g : W → U(1)d with winding numbers Nm

(m = 1, . . . d) around γ as ∮

g

Cm →

∮

g

Cm + 2πNmRm (5.11)

Then the change in the term
∫

Cm ∧ ξ̃m in the non-minimal action (5.8) will leave the

functional integral invariant provided the radii are inversely related, so that for each m

2πkRmR̃m ∈ Z (5.12)

The ambiguity in the three-dimensional form of the non-minimal term (5.7) for two

3-manifolds V, V ′ with the same boundary W is the integral over the compact 3-manifold

V − V ′

Snon−min(V ) − Snon−min(V ′) =
1

2

∫

V −V ′

Gm ∧ ξ̃miDXi (5.13)

The integral of Gm over any 2-cycle Γ ∈ W is
∫

Γ
Gm = 2πNRm (5.14)

for some integer N . Then the integral over the compact 3-manifold V − V ′ will not affect

the functional integral provided the same condition (5.14) is satisfied.

Thus the torus generated by the k̃ with coordinates X̃m is dual to the torus generated

by the k with coordinates Xm, with inversely related periodicities (5.14). A convenient

choice is to take Rm = 1, R̃ = 1/(2πk) for all m. For each m, Xm/Rm has period 2π and

Cm/Rm is conventionally normalised, so that for any 2-cycle Γ ∈ N
∫

Γ
Φm = 2πNRm (5.15)
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for some integer N , so that (2πRm)−1[Fm] represents an integral cohomology class for each

m. The condition that (k/2π)[H] is an integral cohomlogy class implies from (3.34) that

(k/2π)[F̃m ∧ ξm] should also be an integral cohomology class. Using (5.9), this implies that

kRm[F̃m] be integral, and using (5.12) this implies that (2πR̃m)−1[F̃m] is integral, so that

the topology is partially characterised by d Chern-classes (2πRm)−1[Fm] and d dual Chern

classes or H-classes (2πR̃m)−1[F̃m] in H2(N,Z).

Consider now the integration over X̃m for arbitrary W , following [3, 4, 7]. On a general

Riemann surface W , X̃m(σ) can be written in terms of a function xm(σ) and a winding

term, so that

dX̃m(σ) = dxm(σ) +
∑

r

2πN r
mR̃mωr(σ) (5.16)

where {ωr} is a basis of harmonic 1-forms on W (normalised to have integral periods) and

N r
m are integers. Then the only dependence on X̃ of (5.8) is through the term Cm ∧ dX̃m,

so that using (5.16), the functional integral over X̃m becomes a functional integral over xm

and a sum over the integers N r
m. The xm are lagrange multipliers imposing the constraint

Gm = 0, so that Cm are flat connections, while the sum over the integers N r
m imposes the

constraint that the Wilson lines
∮

C all vanish, so that the connection C is pure gauge.

Then a suitable gauge choice is C = 0, in which case the ungauged model is recovered.

6. T-duality

6.1 T-dualising on d circles

If Xm are coordinates on a torus, the X̃m are coordinates on the dual torus. M is a T d

bundle over N , and M̂ is a torus bundle over M and so a T 2d bundle over N . With these

periodicities, it was seen in the last section that X̃m is a lagrange multiplier imposing

the condition that C is pure gauge, and so can be set to zero by a gauge choice, and the

ungauged model on (M,g,H) is recovered. Then the gauged model on (M̂, g,H) (4.31)

or (4.34) is equivalent to the ungauged model on (M,g,H) for any W . However, one can

instead integrate out the gauge fields C to get a sigma model with geometry (M̂ , g′,H ′)

given by (4.39) or (4.40). This still has the local gauge symmetry (2.8), and taking the

quotient by the isometry group generated by the k̂m gives a sigma-model on M̃ , the space

of orbits, with metric g̃ = g′ and 3-form H̃ = H ′. Then the sigma-model on (M̃, g̃, H̃)

is equivalent to that on (M,g,H) as they define equivalent quantum theories, since the

functional integrals are related by different gauge choices for the master sigma-model on

M̂ . The projection from the model on M̂ to that on M̃ can be thought of as a gauge-fixing

of the isometry symmetry by setting the Xm to constants locally.

The formulae from section 3 can be immediately applied to this case of the gauging of

the sigma-model on M̂ , with the replacement ξ̂ → ξ̃. For d = 1, from (3.16), the metric g

on M and dual metric g̃ on M̃ are

g = ḡ + Gξ ⊗ ξ (6.1)

g̃ = ḡ + G−1 ξ̃ ⊗ ξ̃ (6.2)
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while the 3-form H and dual 3-form H̃ are, using (3.17),

H = H̄ + ξ ∧ F̃ (6.3)

H̃ = H̄ + ξ̃ ∧ F (6.4)

and H̄ is a 3-form satisfying

dH̄ = −F ∧ F̃ (6.5)

where

F = dξ, F̃ = dξ̃ (6.6)

There is a Killing vector k on M dual to ξ, with g(k, V ) = Gξ(V ) for any vector field V ,

and a Killing vector k̃ on M̃ dual to ξ̃. The forms H̄, F, F̃ are basic with respect to k on M

and with respect to k̃ on M̃ , so can be viewed as forms on N . These transformations agree

with those found by Buscher locally, but are given in terms of globally defined objects. In

local coordinates adapted to the Killing vectors,

k =
∂

∂X
, k̃ =

∂

∂X̃
(6.7)

and

ξ = dX + A (6.8)

ξ̃ = dX̃ + Ã (6.9)

There is a straightforward generalisation to T-dualising on d circles. Us-

ing (3.52), (3.53) with ξ̂ → ξ̃, the original geometry (M,g,H) and the dual geometry

(M̃ , g̃, H̃) are given by

g = ḡ + Gmnξm ⊗ ξn (6.10)

g̃ = ḡ + G̃mn ξ̃m ⊗ ξ̃n (6.11)

and

H = H̄ + F̃m ∧ ξm + dB (6.12)

H̃ = H̄ + ξ̃m ∧ Fm + dB̃ (6.13)

Here E = G + B and

G̃mn = (E−1)(mn), B̃mn = (E−1)[mn] (6.14)

while

B =
1

2
Bmnξm ∧ ξn, B̃ =

1

2
B̃mnξ̃m ∧ ξ̃n (6.15)

and

Fm = dξm, F̃m = dξ̃m (6.16)

while H̄ satisfies

dH̄ = −F̃m ∧ Fm (6.17)
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There are d Killing vectors km on M dual to ξm and d Killing vectors k̃m on M̃ dual to ξ̃

and the forms H̄, Fm, F̃m are basic with respect to km on M and with respect to k̃m on

M̃ , so can be viewed as forms on N . In adapted local coordinates

km =
∂

∂Xm
, k̃m =

∂

∂X̃m

(6.18)

and

ξm = dXm + Am (6.19)

ξ̃m = dX̃m + Ãm (6.20)

Thus the effect of T-duality is to change the bundle M over N with fibres generated

by km to the dual bundle M̃ over N with fibres generated by k̃m while the geometries are

interchanged by

ξm ↔ ξ̃m (6.21)

and

E ↔ Ẽ ≡ E−1 (6.22)

This implies that the 1st Chern classes are interchanged with the H-classes, which are the

dual 1st Chern classes

[Fm] ↔ [F̃m] (6.23)

6.2 The action of O(d, d;Z)

The geometry of a T d bundle (M,g,H) with d Killing vectors satisfying the conditions of

section 4 is specified by the base geometry on N specified by ḡ, b̄, the 2d vector potentials

Am, Ãm, and the scalars Gmn, Bmn. The base geometry is then (N, ḡ, H̄) with H̄ given

by (3.39). There is a natural action of GL(d,R) on Am, Ãm, and Gmn, Bmn and it was seen

that the transformation under GL(d,Z) or under integral shifts of the B field takes the

geometry to one defining the same quantum field theory. The T-duality transformation

discussed in the last subsection dualises in d circles to obtain a dual geometry (M̃, g̃, H̃)

defining the same quantum theory. Such a T-duality transformation can be applied to any

d′ ≤ d of the circles, giving further dual geometries. The group generated by GL(d,Z),

integral B-shifts and the T-dualities on any d′ ≤ d circles is O(d, d;Z). The action of

O(d, d;Z) is given as follows.

Consider an O(d, d) transformation by

h =

(
a b

c d

)
, (6.24)

where a, b, c, d are d × d matrices. This preserves the indefinite metric

L =

(
0 11 0

)
(6.25)
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so that

htLh = L ⇒ atc + cta = 0, btd + dtb = 0, atd + ctb = 1. (6.26)

The transformation rules for E give the non-linear transformation of E under a T-duality

transformation h ∈ O(n, n) [9, 4, 1]

E′ = (aE + b)(cE + d)−1. (6.27)

The 2d 1-forms ξ, ξ̃ combine into a 2d vector of 1-forms

Ξ =

(
ξm

ξ̃m

)
(6.28)

transforming as a vector under O(d, d):

Ξ → Ξ′ = h−1Ξ (6.29)

The group O(d, d,Z) consists of matrices (6.24) with integral entries.

The GL(d;Z) subgroup is

hL =

(
L̃ 0

0 L

)
(6.30)

where Lm
n ∈ GL(d;Z) and L̃ = (Lt)−1. The subgroup of B-shifts B → B + β is through

matrices of the form

hβ =

( 1 β

0 1)
(6.31)

for integral β. The subgroup Γ(Z) of matrices of the form

hΓ =

(
L̃ β

0 L

)
(6.32)

plays an important role, and will be referred to as the geometric subgroup.

The transformation T-dualising in all d circles is

hT =

(
0 11 0

)
(6.33)

In adapted coordinates

Ξ = dX+ A (6.34)

where, introducing O(d, d) vector indices M = 1, . . . , 2d,

AM =

(
Am

Ãm

)
, XM =

(
Xm

X̃m

)
(6.35)

also transform as a vector under O(d, d):

A → A′ = h−1A, X → X′ = h−1X (6.36)
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Then the X are fibre coordinates for a T 2d bundle over N with connection 1-forms A [19].

There are 2d field strengths F = dA, and the corresponding 1st Chern classes [F ] trans-

form as

[F ] → [F ′] = h−1[F ] (6.37)

Then the d Chern classes and the d H-classes fit into a 2d-dimensional representation and

are mixed together under the action of O(d, d;Z).

7. Torus fibrations

7.1 Local Killing vectors

For string theory on a space that is a K bundle, i.e. a bundle whose fibres are some space

K, there are general arguments [27] that any duality that applies to string theory on K

(e.g. mirror symmetry if K is Calabi-Yau, or T or U dualities if K is a torus) can be applied

fibrewise, giving a fibration by a dual string theory on a space whose fibres are the dual

space K̃. In the present context, this implies that it should be possible to apply T-duality

to any space with a T d fibration. However, the arguments discussed so far have been based

on the case where there is an isometry group generated by globally defined Killing vector

fields. In this section, these will be generalised to general torus fibrations, which do not

have globally defined Killing vector fields. The aim of this section is to give a direct proof

that T-duality can be applied fibrewise, and to examine whether there can be obstructions

to fibrewise T-duality.

In general, a T d bundle over N can have GL(d,Z) monodromy around each 1-cycle γ

in N , with the fibres twisted by a large diffeomorphism on T d, so that if km are the vector

fields generating periodic motions along the T d fibres, then continuing km round γ brings

it back to a linear combination Lm
n(γ)kn of the vectors km. Then although there are

locally defined Killing vectors, they do not extend to global Killing vector fields — if one

tries to analytically continue a solution of Killing’s equation to the whole space, non-trivial

monodromy would imply that the vector field is multi-valued.

Suppose then that in each patch Uα of M there are d Killing vector fields kα
m such that

Lmg = 0, LmH = 0 in Uα, and that in each overlap Uα ∩ Uβ

kα
m = (Lαβ)m

nkβ
m (7.1)

for some matrix (Lαβ)m
n in GL(d,Z).1 It then follows that objects constructed from km

and carrying indices m,n . . . now have GL(d,Z) transition functions. For example, from

their definitions it follows that G, ξ have transition functions

Gα = LGβLt, ξα = L̃ξβ (7.2)

where L = Lαβ and L̃m
n is given by L̃ = (Lt)−1. Objects such as G, ξ carrying indices

m,n . . . whose transition functions are just the GL(d,Z) transformation in the appropriate

representation will be referred to as tensors.

1The indices α, β indicate the patch in which the corresponding function has support, while the composite

index αβ indicates a function in the overlap Uα ∩ Uβ. There is no significance here as to whether they are

subscripts or superscripts.
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If Xm
α are coordinates adapted to kα

m, so that kα
m = ∂/∂Xm

α , then

ξm
α = dXm

α + Am
α (7.3)

and

Am
α = (L̃αβ)mnAn

β + dρm
αβ (7.4)

and

Xm
α = (L̃αβ)mnXn

β − ρm
αβ (7.5)

for some ρm
αβ . These are not tensorial patching conditions. The transition functions for

the coordinates X are an affine transformation, so such a bundle is sometimes referred to

as an affine bundle. Here ρm
αβ satisfies ιmdρn = 0, and so is a function on the base N .

The transition functions then act by a large diffeomorphism of the torus together with a

translation of the Xm, and so define an affine torus bundle rather than a principle one.

Next, as ιαmH = (Lαβ)m
nιβnH (where ιαm is the interior product with kα

m)

dvα
m = (Lαβ)m

ndvβ
n (7.6)

so that (4.2) is replaced with

vα
m − (Lαβ)m

nvβ
n = dλαβ

m (7.7)

Then

v̂α
m = dX̂α

m + vα
m (7.8)

will have covariant transition functions

v̂α = Lv̂β (7.9)

provided

X̂α
m = (Lαβ)m

nX̂β
n − λαβ

m (7.10)

The transition functions for Θ are now

Θα
mn − Lm

pLn
qΘβ

pq = −ιmdλαβ
n (7.11)

The one-forms ξ̃α
m defined by

v̂α
m = ξ̃m − Bα

mnξn
α (7.12)

will be tensorial, with

ξ̃α
m = (Lαβ)m

nξ̃β
n (7.13)

provided the Bmn are tensorial, Bα = LBβLt. This condition will be assumed to be the

case in this section, but more general transition functions for Bmn will be discussed in

section 8. The 1-forms ξ̃ take the form

ξ̃α
m = dX̃α

m + Ãα
m (7.14)
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after the change of coordinates (4.26), (4.27) in each patch Uα. From (7.10), (7.11), (4.26),

(4.27), it follows that ∂p(X̃
α
m − (Lαβ)m

nXβ
n ) = 0 so that there are functions ρ̃αβ

m on N such

that the patching conditions are

Ãα
m = (Lαβ)m

nÃβ
n + dρ̃αβ

m (7.15)

and

X̃α
m = (Lαβ)m

nX̃β
n − ρ̃αβ

m (7.16)

Then the bundle M̃ over N with fibres X̃ and connection Ã is a dual affine bundle.

If M is a T d bundle over N , one can choose a cover for M of sets Uα ≃ Ūα ×T d where

Ūα is an open cover of N . The transition functions discussed above are then all functions

on intersections Ūα ∩ Ūβ in N .

7.2 Symmetries of torus fibrations and their gauging

In this section, geometries (M,g,H) that are torus fibrations with local Killing vectors with

transition functions (7.1) will be considered. The formal symmetries of the sigma-model

on (M,g,H) that are associated with such local Killing vectors will be discussed and their

gauging analysed. This will then be used to discuss the symmetries and gauging of the

space (M̂, g,H) with doubled fibres and their implications for T-duality in the following

subsection.

A sigma-model configuration is a map φ : W → M . For a given map φ : W → M , it

is convenient to choose an open cover W(α,r) (labelled by α and an extra index r) of W

such that φ(W(α,r)) ⊂ Uα. Such a cover can be constructed as follows. The map φ can

be combined with the bundle projection π : M → N to define a map π ◦ φ : W → N .

Let Ũα = Ūα ∩ (π ◦ φ(W )), so that {uα} with uα = φ−1 ◦ π−1Ũα is a cover of W , with

φ(uα) ⊆ Uα. For some α, uα may be the empty set. Next, a good cover {W(α,r)} is chosen

for each uα, uα = ∪rW(α,r) with contractible W(α,r), and W = ∪α,rW(α,r).

Then for σ ∈ W(α,r), φ(σ) ∈ Uα and the coordinates Xi
α can be used. Using Xi

α for

σ ∈ W(α,r) and Xi
β for σ ∈ W(β,s), for σ ∈ W(α,r)∩W(β,s), the transition functions following

from (7.5) are

Xm
α (σ(α,r)) = (L̃αβ)mnXn

β (σ(β,s)) − ρm
αβ(σ(β,s)) (7.17)

and the transition functions do not depend on r, s (i.e. they are functions on uα).

Consider the transformation of Xα(σ) for σ in the patch W(α,r) given by

δXm
α = αm

(α,r)k
α
m(X(σ)) (7.18)

where the parameter αm
(α,r)(σ) is a function on W(α,r). As the patch Uα ≃ Ūα × T d in M

contains the entire orbit of the each km, Xα + δXα remains in Uα for each σ ∈ W(α,r).

Consistency with (7.3), (7.1) requires that, for σ ∈ W(α,r) ∩ W(β,s), the parameters patch

together according to

(α(α,r))
m = (L̃αβ)mn(α(β,s))

n (7.19)
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As the transition functions (7.17), (7.19) do not depend on r, s, it follows that X,α

are functions on uα and for some purposes it is useful to use the cover {uα} and write the

transition functions for Xα(σ), αα(σ) for σ in uα ∩ uβ as

αα = L̃αβ , Xm
α = (L̃αβ)mnXn

β − ρm
αβ (7.20)

Note that the cover {uα} is not a good cover in general — e.g. for the constant map

φ : W → X0 ∈ M of the whole world-sheet to a point X0 ∈ Uα0
for some patch Uα0

, the

corresponding patch uα0
= W is the whole of W , and so this will not be contractible unless

W is. For a rigid symmetry with constant α, a different constant parameter αβ is needed

in general for each patch uβ, related by (7.20). The parameters are sections of a bundle,

and in general this has constant local sections, but not constant global sections.

Consider first the special case in which b is a tensor field with vanishing Lie derivative

with respect to the vector fields km, so that the gauging is through minimal coupling, and

vm = −ιmb. Defining Lα = L|uα , the restriction of the ungauged sigma-model lagrangian

L(X(σ)) to σ ∈ uα, then the coordinates Xα can be used and

Lα =
1

2
gijdXi ∧ ∗dXj +

1

2
bijdXi ∧ dXj (7.21)

where Xi = Xi
α. This extends to a globally-defined lagrangian as

Lα = Lβ in uα ∩ ub (7.22)

The transformation (7.18) with constant αα is a rigid symmetry of the lagrangian Lα

for σ ∈ uα, and the question arises as to whether this extends to a symmetry of the full

lagrangian on W . This will be the case if different constant parameters are chosen in

each patch uα ⊂ W , with the transition functions (7.20). As the patching conditions for

the parameters depend on the choice of open sets {uα}, and this in turn depends on a

reference sigma-model map φ : W → M , this is not a proper rigid symmetry, but it is a

formal invariance of the theory.

The transformation (7.18) is a rigid symmetry of the lagrangian Lα on uα and this can

be gauged by introducing the minimal coupling

DaX
i
α = ∂aX

m
α − Cm

α ki
αm (7.23)

where the connection one-forms Cα on uα transform as

δCm
a = ∂aα

m (7.24)

The minimal coupling gives the gauged lagrangian

Lα =
1

2
gijDXi ∧ ∗DXj +

1

2
bijDXi ∧ DXj (7.25)

where Xi = Xi
α, C = Cα and this is invariant under the local transformations (7.18), (7.24)

on uα. This can be done in each patch, with a gauge field Cα(σ) for σ ∈ uα in each patch.
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These local gauged lagrangians will patch together to give a gauged lagrangian on M

that can be integrated over W if (7.22) holds. Using (7.20), this requires that the 1-forms

(Cα)ma dσa have transition functions

Cα = (L̃αβ)Cβ − dραβ (7.26)

where dραβ is the pull-back dραβ = dσa∂aρ
m
αβ(X(σ)). The Cα are 1-forms on uα, so that

if one had introduced C(αr) on W(α,r), then on the overlap W(α,r) ∩ W(α,s) the 1-form is

continuous C(α,r) = C(α,s), and the full form of the transition functions could be written

C(α,r) = (L̃αβ)C(β,s) − dραβ (7.27)

and do not depend on r, s. Comparing with (7.4), Cm
α has the same transition functions as

the pull-back −Am
αi∂Xi

αadσa of −A, so that C is the connection of a bundle over W which

is the pull-back of the bundle M over N with connection −A.

As before, it is useful to write

Cm
αa = C̃m

αa + Φm
αa (7.28)

where

C̃− = (ξ − E−1ξ̄)∂−X, C̃+ = (ξ + (Et)−1ξ̄)∂+X (7.29)

The field equation from varying C is C = C̃ or, equivalently, Φ = 0. The C̃ is a pull-back

connection, with transformation rules

C̃m
αa = (L̃αβ)mnC̃n

βa − ∂aρ
m
αβ(X(σ)) (7.30)

so that Φ is a vector field with covariant transition functions

Φm
αa = (L̃αβ)mnΦn

βa (7.31)

in uα ∩ uβ . Any choice of Φ (e.g. Φ = 0) with these transition functions will give a C with

transition functions (7.26).

Then for each patch uα there is a lagrangian Lα that is invariant under the local

transformations (7.18), (7.24). Further, if the gauge field C is a connection on the pull-

back bundle, i.e. if it has transition functions (7.26) (or equivalently C = C̃ + Φ for

any Φ with transition functions (7.31)), then Lα = Lβ in uα ∩ uβ and the lagrangian

is well-defined on W and invariant under (7.18), (7.24) provided the local parameters

patch according to (7.20). The parameters α are local sections of a bundle with GL(d,Z)

transition functions, and for non-trivial bundles, there will be no global constant section,

and hence no global limit of the gauge symmetry with constant parameters. This bundle

is characterised by its GL(d,Z) monodromies around 1-cycles, and so can only be trivial if

these monodromies are all trivial. The best one can do in general is to find constant local

sections, with the α constant in each patch, but with the constants in different patches

related by (7.20).

This can now be generalised to the case in which b is not globally defined, but H is

invariant. The gauging of the kinetic term involving the metric is as above. The map
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φ : W → M extends to a map φ : V → M where V is a 3-manifold with boundary W and

for any such map choose a cover {Vα} of V with π ◦ φ(Vα) ⊂ Ūα. Then one can define the

lagrangian on Vα

Lα
WZ =

1

3
HijkDXi ∧ DXj ∧ DXk + Gm ∧ vmiDXi (7.32)

with X = Xα. Assuming Ūα is contractible, there are 1-forms vα
m in Uα such that dvm =

ιmH. The vm are determined up to the addition of exact forms, and the lagrangian Lα
WZ

is gauge invariant provided the vm can be chosen so that Lmvn = 0 and ι(mvn) = 0. These

patch to give a well-defined action provided Lα
WZ = Lβ

WZ in Vα∩Vβ, and this requires that

the v are tensorial:

vα = Lvβ (7.33)

These give the generalisation of the conditions for gauging a Wess-Zumino term to the case

of locally-defined Killing vectors. The connection has the same properties as above, and is

given by (7.28), (7.29) for any Φ with the transition functions (7.31).

7.3 T-duality for torus fibrations

Suppose M has d locally-defined Killing vectors with transition functions (7.1). If

ιmιnιpH = 0, then over each patch Ūα in N the construction of section 4 can be re-

peated to give a patch Uα ≃ Ūα × T 2d with coordinates (Yα,Xα, X̃α). This allows the

construction of a space M̂ which is a T 2d bundle over N that has fibre coordinates Xα withX =

(
Xm

X̃m

)
(7.34)

and patching conditions (7.5), (7.16). The one-forms v̂ defined by (7.8) are tensorial,

with transition functions (7.9). There is a Bα
mn and vector fields k̂α

m in Uα such that

the conditions for gauging are satisfied in Uα, so that a gauged lagrangian Lα can be

constructed on uα (or Vα for the WZ-term).

The vector fields k̂α
m have the same tensorial transition functions as kα

m, k̂α = Lk̂β

provided the Bmn given by Bmn = Θmn + ιmvn are tensorial

Bα
mn = Lm

pLn
qBβ

pq (7.35)

Then in each patch there are torus moduli Eα
mn = Gα

mn + Bα
mn and 1-forms ξm

α , ξ̃α
m.

The geometry in each patch is given in term of these by (3.23), (3.34) (with the defini-

tions (3.35), (3.28), (3.27)) and these give a globally defined metric and 3-form as a result

of (7.2), (7.35). For example, B = 1
2Bmnξm ∧ ξn is a globally-defined 2-form as Bα = Bβ.

In each patch, Uα ≃ Ūα×T 2d, the space of orbits under the action of k̂α
m can be thought

of as Ũα ≃ Ūα × T d with fibre coordinates X̃m. With the transition functions (7.16), these

patch together to give the dual space M̃ . This is the dual affine torus bundle with the L̃

in the transition functions (7.5) for M replaced with L in the transition functions (7.16)

for M̃ . T-duality in each patch acts through (6.23), (6.22) and lead to a dual metric g̃α

and 3-form H̃α in Uα given by (6.10), (6.12), and these patch together to give a globally

defined metric and 3-form on M̃ .
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8. Torus fibrations with B-shifts

8.1 B-shifts with Killing vectors

Returning to the set-up of section 4, suppose (M,g,H) has d globally defined Killing vector

fields km, with ιmιnιpH = 0 but suppose that ιmιnH is not necessarily exact. Then in each

patch Uα there is a Bα
mn with

ιmιnH = dBα
mn (8.1)

and as ιmιnH is globally-defined, in overlaps Uα ∩ Uβ, Bα
mn − Bβ

mn is closed, so that

Bα
mn = Bβ

mn + cαβ
mn (8.2)

for some constants cαβ
mn. Then the transition functions for Θ are changed from (4.7) to

Θα
mn − Θβ

mn = cαβ
mn − ιmdλαβ

n (8.3)

As a result, the vector fields k̂ defined by (4.6) are not globally defined,

k̂α
m = k̂β

m + cαβ
mnk̃n

β (8.4)

The condition that k̂α
m, k̃n

α have compact orbits in each patch, so that M̂ is a T 2d bundle,

imposes a quantization condition on the constants cαβ
mn. If Xm ∼ Xm + 2πR, X̃m ∼

X̃m + 2πR̃ for some R, R̃ (with R̃ = (2πkR)−1 if the conditions of section 5 are imposed),

then the quantization condition on the c is that (R/R̃)cαβ
mn are integers.

In section 7, transition functions on M that mix the k among themselves were consid-

ered, so that M is a torus bundle which is not principle, and (8.4) gives a generalisation in

which transition functions on M̂ mix the k̂ with the k̃, so that M̂ is an affine T 2d bundle

which is not principle. Then although the vector fields km are globally defined on M , the

k̂m are not globally defined on M̂ . The 1-forms ξ have trivial transition functions ξα = ξβ,

but

ξ̃α
m = ξ̃β

m + cαβ
mnξn (8.5)

The transition functions for E = G + B are then

Eα = Eβ + cαβ (8.6)

The T-duality transformation (6.23), (6.22) can now be applied in any given patch to

give a dual geometry with moduli Ẽmn given by Ẽα = (Eα)−1 in Uα. If this is done in

each patch, then the transition functions (8.6) give the transition functions

Ẽα = Ẽβ(1 + cαβẼβ)−1 (8.7)

for Ẽα = (Eα)−1. As a result, the geometries on each patch (Ũα, g̃α, H̃α) do not fit together

to give a geometry on M̃ , as the transition functions for g̃α, H̃α following from (8.7) do

not give tensor fields on M̃ . The transition functions for E (8.6) are through an O(d, d;Z)

transformation (6.27) with

hαβ =

( 1 cαβ

0 1 )
, (8.8)
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while those for Ẽ (8.7) are an O(d, d;Z) transformation with

h̃αβ =

( 1 0

cαβ 1)
, (8.9)

This is of the form h̃αβ = hT hαβh−1
T where hT is the T-duality transformation (6.33), as

expected from [19]. Then M̂ is a T 2d bundle over N which will in general have O(d, d;Z)

monodromy of the form

M(γ) =

( 1 N(γ)

0 1 )
(8.10)

round 1-cycles γ in M̂ for some integers N(γ). The transition functions are T-dualities,

giving a T-fold [19]. Although the resulting background is not a conventional geometry on

M̃ , it does give a good non-geometric background for string theory [19], as the transition

functions are a symmetry of string theory.

In this case, there are global issues in understanding the T-duality from the point of

view of the gauged sigma-model. In any given patch, the T-duality can be achieved through

gauging the isometries generated by k̂α
m, giving a gauged lagrangian Lα. However, these

cannot be patched together to form a global gauged lagrangian as (8.4) implies that the

transition functions mix the isometries being gauged with those that are not. Then the T d

generated by the k̂ do not patch together to give a T d bundle over N , and this leads to

the fact that the dual metric g̃ and 3-form H̃ are not globally-defined. One might instead

attempt to gauge the isometries generated by Kα
m = k̂α

m in Uα and the isometries generated

by Kβ
m = k̂β

m + cαβ
mnk̃n

β in Uβ, and in this way try to define globally defined vector fields

Kα
m that can be gauged. However, there is a topological obstruction to doing this if M̂

has non-trivial O(d, d;Z) monodromy, i.e. if there is at least one 1-cycle γ with N(γ) 6= 0.

If all monodromies are trivial, then one can construct a globally-defined Bmn by taking

Bmn = Bα
mn in Uα, Bmn = Bβ

mn + cαβ
mn in Uβ etc and so recover the set-up of section 4 with

globally-defined Bmn.

8.2 B-shifts and torus fibrations

Consider now the situation of section 7 where (M,g,H) is a torus fibration with local

Killing vector fields in each patch with transition functions (7.1), and supose ιmιnιpH = 0.

Then from (4.14))

d(Bα
mn − Lm

pLn
qBβ

pq) = 0 (8.11)

so that

Bα
mn − Lm

pLn
qBβ

pq = cαβ
mn (8.12)

for some constants cαβ
mn. The transition functions for the vector fields k̂ are now

k̂α
m = (Lαβ)m

nk̂β
n + cαβ

mnk̃n
β (8.13)

and the constants cαβ
mn satisfy the same quantization condition as in the last section, so

that the orbits of k̂, k̃ are compact on each patch. The transition functions for the 1-forms
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are

ξm
α = (L̃αβ)mnξn

β

ξ̃α
m = (Lαβ)m

nξ̃β
n + cαβ

mnξn (8.14)

The transition functions are then through the O(d, d;Z) transformations

hαβ =

(
L̃αβ cαβ

0 Lαβ

)
, (8.15)

In each patch one Uα one can T-dualise using the formulae of section 6. This again gives

a T-fold, with transition functions h̃αβ = hT hαβh−1
T with hαβ given by (8.15).

9. T-folds and T-duality

The backgrounds considered here and in [19] are constructed from local patches that are

each conventional geometric string backgrounds. For torus fibrations, these patches are

of the form Uα ≃ Ūα × T d where Ūα are patches on the base N . In each such patch,

the background has a conventional geometry (Uα, gα,Hα) and Uα is assumed to have d

vertical Killing vector fields km tangent to the torus fibres. The geometry (Uα, gα,Hα) is

determined by a geometry (Ūα, ḡα, H̄α) on the base patch Ūα with metric ḡα and 3-form

H̄α, together with T d moduli Eα
mn = Gα

mn +Bα
mn and the U(1)2d connections Am

α , Ãα
m. The

Am are the U(1)d connections associated with the T d fibration.

It was seen in section 4 that it is natural to use this data to construct a T 2d fibration

by introducing d extra toroidal dimensions to construct a patch Ûα ≃ Ūα × T 2d with

U(1)2d connection 1-forms Aα = (Am
α , Ãα

m). Then there are 2d 1-forms ξm, ξ̃m on Ûα whose

horizontal projections are Am
α , Ãα

m, and there are 2d Killing vector fields k̂m, k̃m tangent to

the fibres.

If ιmιnιpH = 0, there is a natural action of O(d, d) on the geometry, with E transform-

ing as (6.27), A = (A, Ã) transforming as (6.36), ξm, ξ̃m transforming as (6.28), (6.29) and

ḡ, H̄ invariant. The subgroup O(d, d;Z) is a symmetry of string theory, as two backgrounds

related by O(d, d;Z) define the same quantum theory.

The string background M is constructed by patching the Uα together. In overlaps

Uα ∩ Uβ, the patching conditions relating (Eα,Aα) to (Eβ ,Aβ) are given by a U(1)2d

gauge transformation together with an O(d, d;Z) transformation hαβ . The background is

geometric if the metrics gα and 3-forms Hα patch together to give a metric tensor and

3-form on M . This requires that all the hαβ can be taken to be of the form (8.15), so that

the monodromies are all in the geometric subgroup Γ(Z) of matrices of the form (6.32).

The kα will be globally-defined vector fields provided the transition functions are all of the

form (8.9), so that the monodromies are in the subgroup of matrices of the form (6.31).

For general Γ(Z) monodromies, M is a T d bundle over N .

For O(d, d;Z) monodromies that are not in Γ(Z), M is a T-fold. This can be viewed

as a manifold M on which the gα and Hα do not patch together to give tensor fields on

M . Such T-folds are non-geometric backgrounds, but nonetheless can provide good string
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backgrounds [19]. The transition functions in O(d, d;Z) ⋉ U(1)2d can be used to patch

the Ûα together to form a T 2d bundle M̂ over N with connection A. The k̂m, k̃m will be

globally-defined vector fields on M̂ only if the O(d, d;Z) monodromies are trivial.

The topology of the T 2d bundle M̂ over N is characterised by the 2d first Chern classes

[F ] ∈ H2(N,Z) and the O(d, d;Z) monodromies g(γ) round 1-cycles γ in N . An O(d, d;Z)

T-duality transformation h on these is [F ] → h−1[F ], g(γ) → hg(γ)h−1.

The orbits of the k̂m define a space U ′
α ≃ Ūα × T d ⊂ Ûα, and these patch together to

form a T d bundle over N if the monodromies are all in the GL(d,Z) subgroup. In that

case, if ιmιnιpH = 0 there is a gauged sigma-model on M̂ in which the action of the k̂m is

gauged, and this can be used to show that the action of the T-duality group O(d, d;Z) on

the geometry is a symmetry of the quantum theory, and it takes a geometric background

with GL(d,Z) monodromies to a geometric background with GL(d,Z) monodromies. This

extends the proof of T-duality to the case of torus fibrations with GL(d,Z) monodromies,

and this is the maximal case in which a complete proof can be given in the way discussed

here using a globally-defined gauged sigma-model. The condition that the monodromies

are all in GL(d,Z) is equivalent to the condition that ιmιnH is exact.

In the general case, one can construct a gauged sigma-model in any patch Ûα in which

the symmetry generated by the k̂ is gauged provided ιmιnιpH = 0, and this can be used to

construct a dual geometry (Ũα, g̃α, H̃α) on the space of orbits Ũα ≃ Ūα × T d. For physical

effects localised within Ûα, the sigma model on the original geometry (Uα, gα,Hα) and

the dual geometry (Ũα, g̃α, H̃α) give equivalent quantum theories, so one can in principle

use either. This dualisation can then be done in all patches. If the original background

had transition functions hαβ ∈ O(d, d;Z), the dual one has transition functions h̃αβ ∈

O(d, d;Z) given by h̃αβ = hT hαβh−1
T . If the original space was a geometric background

with monodromies in Γ(Z) with non-trivial B-shifts, so that the monodromies are not all

in GL(d,Z), the dual background is a non-geometric T-fold. A discussion of T-duality in

this general case can be given using the doubled formalism of [19]; this will be discussed in

a separate publication.

The most general case requires the relaxation of the constraint ιmιnιpH = 0, so that

ιmιnιpH gives constants in each patch, and the algebra of the Killing vectors k̂, k̃ becomes

non-abelian. The results of [28] suggest that T-duality should generalise to this case,

but the non-abelian structure leads to issues similar to those that arise in non-abelian

duality [36 – 38], so that the approach used here appears difficult to implement in that

case.
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